Probabilistic outlier detection for sparse multivariate geotechnical site investigation data using Bayesian learning
نویسندگان
چکیده
منابع مشابه
Outlier Detection in Multivariate Data
The objective of this research is detection of outliers in multivariate data employing various distance measure, particularly using robust regression diagnosis technique. Several classical outlier identification methods are based on the sample mean and covariance matrix in general. But they do not always yield better result, as they themselves are affected by the outliers. Sometimes one outlier...
متن کاملMultivariate outlier detection with compositional data
Multivariate outlier detection is usually based on Mahalanobis distances, by plugging in robust estimates of location and covariance. For compositional data, carrying only relative information, a special transformation needs to be consulted in order to be able to work in the appropriate geometry. The effect of the transformation is discussed in this contribution. Furthermore, different possibil...
متن کاملMultivariate Outlier Detection Using Independent Component Analysis
The recent developments by considering a rather unexpected application of the theory of Independent component analysis (ICA) found in outlier detection , data clustering and multivariate data visualization etc . Accurate identification of outliers plays an important role in statistical analysis. If classical statistical models are blindly applied to data containing outliers, the results can be ...
متن کاملMultivariate Spatial Outlier Detection
A spatial outlier is a spatially referenced object whose non-spatial attribute values are significantly different from the values of its neighborhood. Identification of spatial outliers can lead to the discovery of unexpected, interesting, and useful spatial patterns for further analysis. Previous work in spatial outlier detection focuses on detecting spatial outliers with a single attribute. I...
متن کاملMultivariate functional outlier detection
Functional data are occurring more and more often in practice, and various statistical techniques have been developed to analyze them. In this paper we consider multivariate functional data, where for each curve and each time point a p-dimensional vector of measurements is observed. For functional data the study of outlier detection has started only recently, and was mostly limited to univariat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geoscience Frontiers
سال: 2021
ISSN: 1674-9871
DOI: 10.1016/j.gsf.2020.03.017